Analysis of the interactions taking place in the recognition site of a bimetallic Mg(II)-Zn(II) enzyme, isopentenyl diphosphate isomerase. a parallel quantum-chemical and polarizable molecular mechanics study.

نویسندگان

  • Nohad Gresh
  • Nicole Audiffren
  • Jean-Philip Piquemal
  • Jerome de Ruyck
  • Marie Ledecq
  • Johan Wouters
چکیده

Using the SIBFA polarizable molecular mechanics procedure, we analyze the binding energy of a bimetallic Mg(II)/Zn(II) enzyme, isopentenyl diphosphate isomerase, to an inhibitor built up of a trianionic diphosphate and of a cationic ethyldimethylammonium (EDMA) moiety. The analyses are performed on the protein recognition site, which totals 13 residues, as well as on some "mutants" in which one selected residue is removed at a time. They are also carried out for the individual recognition sites, namely, EDMA, Mg(II), and Zn(II). Comparisons are done with ab initio quantum chemistry (QC) results on all considered sites, with different basis sets and at different levels of correlation. The SIBFA computations reproduce the evolutions of the QC interaction energies in the recognition site and its "mutants". For such sites, small (<2-3%) relative errors are found after the BSSE correction is done. Such close agreements can conceal, however, some shortcomings found in the individual binding sites, which QC energy decomposition analyses can identify.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics

Type I phosphomannose isomerase (PMI) is a Zn-dependent metalloenzyme involved in the isomerization of D-fructose 6-phosphate to D-mannose 6-phosphate. One of our laboratories has recently designed and synthesized 5-phospho-D-arabinonohydroxamate (5PAH), an inhibitor endowed with a nanomolar affinity for PMI (Roux et al., Biochemistry 2004, 43, 2926). By contrast, the 5-phospho-D-arabinonate (5...

متن کامل

Identification of an Archaeal type II isopentenyl diphosphate isomerase in methanothermobacter thermautotrophicus.

Isopentenyl diphosphate (IPP):dimethylallyl diphosphate isomerase catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks required for biosynthesis of isoprenoid compounds. Two different isomerases have been reported. The type I enzyme, first characterized in the late 1950s, is widely distributed in eukaryota and eubacteria. The type II e...

متن کامل

Type II isopentenyl diphosphate isomerase from Synechocystis sp. strain PCC 6803.

Open reading frame sll1556 in the cyanobacterium Synechocystis sp. strain 6803 encodes a putative type II isopentenyl diphosphate (IPP) isomerase. The His(6)-tagged protein was produced in Escherichia coli and purified by Ni(2+) chromatography. The homotetrameric enzyme required NADPH, flavin mononucleotide, and Mg(2+) for activity; K(m)(IPP) was 52 microM, and k(cat)(IPP) was 0.23 s(-1).

متن کامل

Synthesis, characterization, antibacterial activity and molecular modeling studies of Ni(II) and Zn(II) complexes with phenylpyridylformamidine ligand

The Ni(II) and Zn(II) complexes with phenylpyridylformamidine (PhPyF) ligand, [Ni(PhPyF)Cl2] and [Zn(PhPyF)Cl2], have been prepared and investigated using different chemical techniques such as elemental analysis, molar conductance, FT-IR, UV-vis spectra and magnetic moment. The obtained chemical analysis data showed the formation of 1:1 (metal: ligand) ratio. The square planar and tetrahedral g...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 14  شماره 

صفحات  -

تاریخ انتشار 2010